首页> 外文OA文献 >Cross-Lingual Subspace Gaussian Mixture Models for Low-Resource Speech Recognition
【2h】

Cross-Lingual Subspace Gaussian Mixture Models for Low-Resource Speech Recognition

机译:用于低资源语音识别的跨语言子空间高斯混合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies cross-lingual acoustic modeling in the context of subspace Gaussian mixture models (SGMMs). SGMMs factorize the acoustic model parameters into a set that is globally shared between all the states of a hidden Markov model (HMM) and another that is specific to the HMM states. We demonstrate that the SGMM global parameters are transferable between languages, particularly when the parameters are trained multilingually. As a result, acoustic models may be trained using limited amounts of transcribed audio by borrowing the SGMM global parameters from one or more source languages, and only training the state-specific parameters on the target language audio. Model regularization using ℓ1-norm penalty is shown to be particularly effective at avoiding overtraining and leading to lower word error rates. We investigate maximum a posteriori (MAP) adaptation of subspace parameters in order to reduce the mismatch between the SGMM global parameters of the source and target languages. In addition, monolingual and cross-lingual speaker adaptive training is used to reduce the model variance introduced by speakers. We have systematically evaluated these techniques by experiments on the GlobalPhone corpus.
机译:本文在子空间高斯混合模型(SGMM)的背景下研究跨语言声学建模。 SGMM将声学模型参数分解为一个集合,该集合在隐马尔可夫模型(HMM)的所有状态与特定于HMM状态的另一个状态之间全局共享。我们证明了SGMM全局参数可在语言之间传递,尤其是当参数以多语言训练时。结果,通过从一种或多种源语言借用SGMM全局参数,并且仅在目标语言音频上训练特定于状态的参数,可以使用有限数量的转录音频来训练声学模型。使用ℓ1-范数惩罚的模型正则化被证明在避免过度训练和导致较低的单词错误率方面特别有效。我们研究子空间参数的最大后验(MAP)适应性,以减少源语言和目标语言的SGMM全局参数之间的不匹配。另外,使用单语和跨语说话者自适应训练来减少说话者引入的模型差异。我们已经通过在GlobalPhone语料库上进行实验来系统地评估了这些技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号